Ensemble of SVMs for Incremental Learning

نویسندگان

  • Zeki Erdem
  • Robi Polikar
  • Fikret S. Gürgen
  • Nejat Yumusak
چکیده

Support Vector Machines (SVMs) have been successfully applied to solve a large number of classification and regression problems. However, SVMs suffer from the catastrophic forgetting phenomenon, which results in loss of previously learned information. Learn have recently been introduced as an incremental learning algorithm. The strength of Learn lies in its ability to learn new data without forgetting previously acquired knowledge and without requiring access to any of the previously seen data, even when the new data introduce new classes. To address the catastrophic forgetting problem and to add the incremental learning capability to SVMs, we propose using an ensemble of SVMs trained with Learn. Simulation results on real-world and benchmark datasets suggest that the proposed approach is promising.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

Reducing the Effect of Out-Voting Problem in Ensemble Based Incremental Support Vector Machines

Although Support Vector Machines (SVMs) have been successfully applied to solve a large number of classification and regression problems, they suffer from the catastrophic forgetting phenomenon. In our previous work, integrating the SVM classifiers into an ensemble framework using Learn++ (SVMLearn++) [1], we have shown that the SVM classifiers can in fact be equipped with the incremental learn...

متن کامل

Multi-Task Multi-Sample Learning

In the exemplar SVM (E-SVM) approach of Malisiewicz et al., ICCV 2011, an ensemble of SVMs is learnt, with each SVM trained independently using only a single positive sample and all negative samples for the class. In this paper we develop a multi-sample learning (MSL) model which enables joint regularization of the E-SVMs without any additional cost over the original ensemble learning. The adva...

متن کامل

Incremental Support Vector Machine Construction

SVMs suffer from the problem of large memory requirement and CPU time when trained in batch mode on large data sets. We overcome these limitations, and at the same time make SVMs suitable for learning with data streams, by constructing incremental learning algorithms. We first introduce and compare different incremental learning techniques, and show that they are capable of producing performanc...

متن کامل

Ensemble Methods of Appropriate Capacity for Multi-Class Support Vector Machines

Roughly speaking, there is one single model of pattern recognition support vector machine (SVM), with variants of lower popularity. On the contrary, among the different multi-class SVMs (M-SVMs) published, none is clearly favoured. Although several comparative studies between M-SVMs and decomposition methods have been reported, no attention had been paid so far to the combination of those model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005